

Detector Support Group

Weekly Report, 2019-12-03

Summary

Hall A- SoLID Magnet Controls

- Verified JLab 100µA Constant Current Source (CCS) schematic matches parts list
 - **★** Preliminary component layout of PCB completed

	Reference	100uA CSS from S. Lassiter Parts list	100uA CSS from Jlab Schematic (Hall C)	Comment	Manuf.	Description
1	PL01	1803280	PL01		Phoenix Co	3 Pin Mini-combicon Header, MC1,5/3-G-3,81
2	PL01	<u>1803581</u>		Mating part to 1803280	Phoenix Co	3 Pin Mini-combicon Plug, MC1,5/3-ST-3,81
3	J1, J2	1803413			Phoenix Co	16 Pin Mini-combicon Header, MC1,5/16-G-3,81
4	J1, J2	1803714		Mating part to 1803413	Phoenix Co	16 Pin Mini-combicon Plug, MC1,5/16-ST-3,81
5	U101-U801	508-AG10D-ES		not on schematic	Augat	8 Pin Dip Socket
6	U101-U801	OPA234P	OPA234		Burr Brown	Op Amp
7	U1	AD581JH	AD581		Analog De	10V Reference
8	U1	8059-2G1		not on schematic	Augat	3 Pin IC Socket
9	F101-F801	TRF250-120U-ND	TR250-120		Raychem	0.120 Amp Polyswitch
10	R1	9.1KADCT-ND	9.09K		Yageo	9.1K, 0.1% 1/4 Watt Resistor
11	R2	MFP-25BRD52-1K	1.01K	Typo in p/n	Yageo	1.0K, 0.1% 1/4 Watt Resistor
12	R101	PTF5610K000BZEB	10K		VISHAY	10K, 0.1% 1/8 Watt Resistor, (I = 100 uA)
13	R201	PTF5610K000BZEB	10K		VISHAY	10K, 0.1% 1/8 Watt Resistor, (I = 100 uA)
14	R301	PTF5610K000BZEB	10K		VISHAY	10K, 0.1% 1/8 Watt Resistor, (I = 100 uA)
15	R401	PTF5610K000BZEB	10K		VISHAY	10K, 0.1% 1/8 Watt Resistor, (I = 100 uA)
16	R501	PTF5610K000BZEB	10K		VISHAY	10K, 0.1% 1/8 Watt Resistor, (I = 100 uA)
17	R601	PTF5610K000BZEB	10K		VISHAY	10K, 0.1% 1/8 Watt Resistor, (I = 100 uA)
18	R701	PTF5610K000BZEB	10K		VISHAY	10K, 0.1% 1/8 Watt Resistor, (I = 100 uA)
19	R801	PTF5610K000BZEB	10K		VISHAY	10K, 0.1% 1/8 Watt Resistor, (I = 100 uA)
20	R102	RN55D3011F	3K		Dale	3.01K, 1% 1/4 Watt Resistor
	R202	RN55D3011F	3K		Dale	3.01K, 1% 1/4 Watt Resistor
22	R302	RN55D3011F	3K		Dale	3.01K, 1% 1/4 Watt Resistor
23	R402	RN55D3011F	3K		Dale	3.01K, 1% 1/4 Watt Resistor
24	R502	RN55D3011F	3K		Dale	3.01K, 1% 1/4 Watt Resistor
	R602	RN55D3011F	3K		Dale	3.01K, 1% 1/4 Watt Resistor
26	R702	RN55D3011F	3K		Dale	3.01K, 1% 1/4 Watt Resistor
27	R802	RN55D3011F	3K		Dale	3.01K, 1% 1/4 Watt Resistor
28	Q101-Q801	TIP29C	TIP29		Motorolla	30 W Power Transistor
29	Q101-Q801	532-576802B31G		not on pcb/schematic	Aavid	576802 Heat Sink
30	K101-K801	PE014024	PE Series Relay		Siemens	PE Series 5 Amp Relay, (1 Form C (SPDT)
	JP101-JP802	538-87891-4006		full p/n (not on original list)	Molex	40 Pin Breakaway Header
-	JP101-JP802	SNT-100-BK-G		replaced wrong part	Samtec	Jumpers, Quantity 10, Part No.: JUMPERS
33	C101-C801	1C10X7R104K050B		replaced obsolete p/n	VISHAY	0.1uF Monolithic Cap

Spreadsheet comparing parts list to JLab schematic of the 100µA CCS board

- Test connectors ordered for the spare CCS board
- Developing FactoryTalk View data logger
 - * Installed SQL Server Management Studio 2008 to manage database and store data from PLC test station
 - * Testing communication between FactoryTalk View (ODBC data archiving mode) and database source in SQL Server
- Developing controls and instrumentation drawings
 - * Modifying drawing numbers based on JLab convention

Hall B - HDice

 Developed LabVIEW code to average, plot, and save to a text file Lock-in amplifier readings

Hall B - LTCC

- Updated, for sector 3, mass flow controller's full scale flow rate value to 7 liters/minute
 - **★** Allows Hall B to fill the sector at a faster rate

British Boltan

Detector Support Group

Weekly Report, 2019-12-03

Hall B - RICH

- Relocated aerogel from EEL 124 dry-cabinet to EEL 121b dry-cabinets after finding that EEL 124 dry-cabinet was not working
 - * Emailed manufacturer about the problem

Hall B – SVT

- Debugged leak sensor malfunction located in the instrumentation cart
 - * Hardware interlock tripped after leak sensor was unseated; size of drip pan where sensor is located prevents it from sitting flat on its base
 - * Taped sensor and base to bottom of drip pan to seat sensor correctly on its base
 - **★** Tested sensor by adding water drops in the drip pan

Hall B – Torus Magnet

- Debugged magnets inability to ramp to negative current
 - **★** Verified there is no code on PLC preventing user from entering a negative current
 - * Issue caused by some internal fault of MPS control board; hard power cycle of board resolved the issue

Hall C

• Terminated 15 four-wire RTD cables for polarized 3He target

Hall C - CAEN HV Hardware Testing

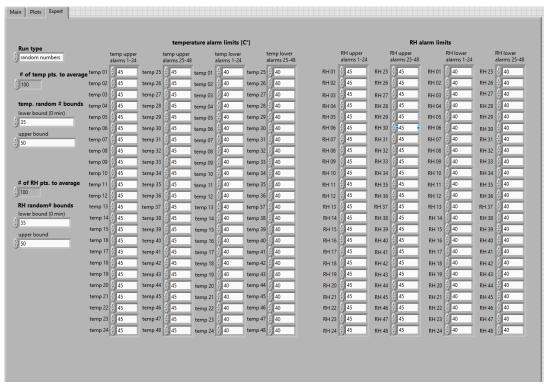
- Investigated cause of communication loss of board with the mainframe (hvcaentest2)
 - * Tested three boards (Ser. #s 0262, 0301, 0302) in slot 0
 - * Noted slot connection error at least once with all three boards
 - Indicates problem with the crate and not with boards

DSG R&D - EPICS Data Logger

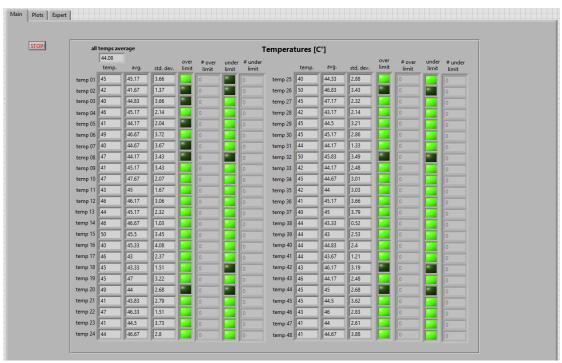
- Changed the monitoring code to output timestamp as well as PV information
 - * Timestamp no longer has to be appended to PV output data
- Linker issues during compiling caused by adding MySQL statements to monitoring code
 - * Adding file paths for the correct MySQL and system libraries to *makefile* solved these issues

DSG R&D - LV Chassis sbRIO

- Developed ADC communication subVIs for sbRIO
 - * subVIs generate clock and data signals required to read out ADCs in LV Chassis
- Mapped old DE0-Nano FPGA read/write addresses for sensors to sbRIO digital input/output channels
- Developed "FPGA Read" and "FPGA Write" subVIs to be used in LV Chassis LabVIEW program in place of serial read/write


DSG R&D - RICH

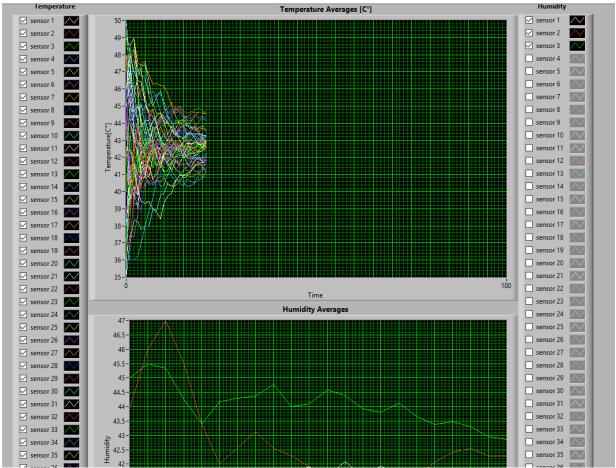
 Developed with LabVIEW analysis package to set hi and low alarm limits, calculate rolling averages, and plot real time values for hardware interlock systems



Detector Support Group

Weekly Report, 2019-12-03

Expert screen where user can set alarm limits for temperature and humidity.



Main screen where user can monitor temperature values and alarms. Rolling average and standard deviation is displayed here for random temperature values during development.

Detector Support Group

Weekly Report, 2019-12-03

Real-time plots of average temperature and humidity for each sensor. User can choose which sensor(s) to display.

Engineering Division

- Beam position monitor pcb population
 - ★ Soldered 24 test points, four dual LEDs, and four 96-pin DIN connectors (8 of 20 boards complete)